HA4VTG 90 Axial Piston Variable Pump

Product show and brief introduction

Series 3
Size 90
Nominal pressure 40 MPa
Peak pressure 45 MPa
Closed circuit
for the drum drive in mobile
concrete mixers

Contents

Features	27
Model code	28
Technical data	29
HW-proportional control,hydraulic,mechanical servo	29
Installation dimension	30
Through drive dimensions	31

Features

- Variable axial piston pump of swashplate design for hydrostatic closed circuit transmission
- Flow is proportional to drive speed and displacement and is infinitely variable
- Flow increases with the swivel angle of the swashplate from 0 to its maximum value
- Flow direction changes smoothly when the swashplate is moved through the neutral position
- Two pressure-relief valves are provided on the high pressure ports to protect the hydrostatic transmission(pump and motor) from overload
- The high-pressure relief valves also function as boost valves
- The integrated boost pump acts to replenish leakage and provide control oil
- The maximum boost pressure is limited by a built-in boost-pressure-relief valve

Model code

Technical Data

Size				90
Displacement	variable pump	V g max	mL/r	90
	boost pump(at P=2MPa)	V gh	mL/r	28.3
Speed	maximum at V _{g max}	No max continuous	min ⁻¹	3050
	minimum	Nmin	min ⁻¹	500
Flow	at n _{max continuous} and V _{gmax}	Q∨ max	L/min	275
Power ¹⁾	at n_{max} continuous and V_{gmax} $\triangle P = 40 \text{ MPa}$	P _{max}	kW	183
Torque ¹⁾	at $V_{g max}$ $\triangle P = 40 MPa$	То тах	Nm	572
		Т	Nm	143
Moment of inertia for rotary group		J	kgm²	0.0106
Weight approx.(without through drive)		m	kg	48

HW-Proportional control, hydraulic, mechanical servo

The flow output of the pump is infinitely varied in the range of 0 to 100%, proportional to the rotation of the control lever between 0° and $\pm 29^{\circ}$ from the spring-centered zero flow porition.

A feedback lever, connected to the stroke piston, maintains the pump flow for any given position of the control lever between 0° and $\pm 29^\circ$

Swivel angle β at the control lever for deflection:

Start of control at $~\beta$ =3° End of control at $~\beta$ =29° (max.displacement $~V_{gmax})$

Mech. Stop for $\,\beta$: $\pm\,40^{\circ}$

The maximum required torque at the lever is 170 Ncm. To prevent damage to the HW control unit, a positive mechanical stop must be provided for the HW control lever.

Note: Spring centering enables the pump to move automatically into the neutral position ($V_g=0$) as soon as there is no onger any torque on the control lever of the HW control unit (regardless of deflection angle).

Assignment Direction of rotation-Control-Direction of through put flow

			ere and it is believed to remove	
Direction of rotation	CW		cc	w
Lever direction	Α	В	Α	В
Control pressure	X2	X1	X2	X1
Direction of through put flow	B to A	A to B	A to B	B to A
Operating pressure	MA	Мв	Мв	MA

Designation	Function	Size
A,B	Service line Fixing thread A/B	ф 25 M12×1.75;17 deep
S	Suction	M42×2;20 deep
T ₁ T ₂	Tank	M26×1.5;16 deep
Ma, Ma	Measuring pressure A Measuring pressure B	M12×1.5;12 deep
R	Air bleed	M16×1.5;12 deep
X_1, X_2	Contril pressure (upstream of orfice)	M12×1.5;12 deep
X3, X4	Stroking chamber pressure	M12×1.5;12 deep
Ps	Pilot pressure inlet	M14×1.5;12 deep

Shaft ands

L Splined shaft 1 1/2in with coupling flange

S Splined shaft 1 1/2in 23 T 16/32DP¹⁾ (SAE J744)

1)ANSI B92.1a-1976.30° pressure angle,flat root ,side fit, tolerance class 5.

Through drive dimensions

Through drive SAE A (F01)

Through drive SAE B(F02)

